Extensive efforts have been made to harvest energy from water in the form of raindrops, river and ocean waves, tides and others. However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects—as seen in characterizations of the charge generation and transfer that occur at solid–liquid or liquid–liquid interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.
Manipulating liquid is of great significance in fields from life sciences to industrial applications. Owing to its advantages in manipulating liquids with high precision and flexibility, electrowetting on dielectric (EWOD) has been widely used in various applications. Despite this, its efficient operation generally needs electrode arrays and sophisticated circuit control. Here, we develop a largely unexplored triboelectric wetting (TEW) phenomenon that can directly exploit the triboelectric charges to achieve the programmed and precise water droplet control. This key feature lies in the rational design of a chemical molecular layer that can generate and store triboelectric charges through agile triboelectrification. The TEW eliminates the requirement of the electric circuit design and additional source input and allows for manipulating liquids of various compositions, volumes, and arrays on various substrates in a controllable manner. This previously unexplored wetting mechanism and control strategy will find diverse applications ranging from controllable chemical reactions to surface defogging.
The global energy crisis facing us today is on the rise. At the large scale, the increasing threat of energy crisis as well as global warming is pushing people to actively search for low-cost, sustainable approaches to harvest energy with improved performances. At the small scale, as we enter a new era of intelligence, people are constructing a huge number of objects linked to the “Internet of Things” to continuously track and monitor the real-time status and data of various objects. In such applications, the devices to be powered are widely distributed, and the power needed is at the scale of microwatt to watt range. New techniques that can harvest clean and renewable energy resources, at a myriad of scales, are in urgent need.
Recently, several water energy-harvesting techniques that rely on the generation and transfer of interfacial charges have drawn significant attention, such as triboelectric nanogenerator (TENG), reverse electrodialysis, and hydrovoltaic technology. Operating in various working conditions, the performances of these devices are closely dictated by the interfacial properties of dielectric materials as well as their interaction with liquid. In particular, a slippery surface that allows for timely shedding of liquid is important for continuous water kinetic energy harvesting. Moreover, most water energy-harvesting devices to date are limited by low energy density owing to the fact that the generation and transfer of interfacial charges mainly occur at the interface, which is an interfacial effect by nature.
Bubbles have been extensively explored as energy carriers ranging from boiling heat transfer and targeted cancer diagnosis. Yet, despite notable progress, the kinetic energy inherent in small bubbles remains difficult to harvest. Here, we develop a transistor-inspired bubble energy generator for directly and efficiently harvesting energy from small bubbles. The key points lie in designing dielectric surface with high-density electric charges and tailored surface wettability as well as transistor-inspired electrode configuration. The synergy between these features facilitates fast bubble spreading and subsequent departure, transforms the initial liquid/solid interface into gas/solid interface under the gating of bubble, and yields an output at least one order of magnitude higher than existing studies. We also show that the output can be further enhanced through rapid bubble collapse at the air/liquid interface and multiple bubbles synchronization. We envision that our design will pave the way for small bubble-based energy harvesting in liquid media.
Various physical tweezers for manipulating liquid droplets based on optical, electrical, magnetic, acoustic, or other external fields have emerged and revolutionized research and application in medical, biological, and environmental fields. Despite notable progress, the existing modalities for droplet control and manipulation are still limited by the extra responsive additives and relatively poor controllability in terms of droplet motion behaviors, such as distance, velocity, and direction. Herein, we report a versatile droplet electrostatic tweezer (DEST) for remotely and programmatically trapping or guiding the liquid droplets under diverse conditions, such as in open and closed spaces and on flat and tilted surfaces as well as in oil medium. DEST, leveraging on the coulomb attraction force resulting from its electrostatic induction to a droplet, could manipulate droplets of various compositions, volumes, and arrays on various substrates, offering a potential platform for a series of applications, such as high-throughput surface-enhanced Raman spectroscopy detection with single measuring time less than 20 s.
剩余 0
Rm.QR802, Choi Kai Yau Building, PolyU, Kowloon, Hong Kong
+852 2766 5213
wanghuai.xu@polyu.edu.hk